3.1098 \(\int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx\)

Optimal. Leaf size=97 \[ \frac{2 \left (A b^2-a (b B-a C)\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d (a+b)}+\frac{2 (b B-a C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac{2 C E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d} \]

[Out]

(2*C*EllipticE[(c + d*x)/2, 2])/(b*d) + (2*(b*B - a*C)*EllipticF[(c + d*x)/2, 2])/(b^2*d) + (2*(A*b^2 - a*(b*B
 - a*C))*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b^2*(a + b)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.313814, antiderivative size = 97, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 43, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.116, Rules used = {3059, 2639, 3002, 2641, 2805} \[ \frac{2 \left (A b^2-a (b B-a C)\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d (a+b)}+\frac{2 (b B-a C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac{2 C E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])),x]

[Out]

(2*C*EllipticE[(c + d*x)/2, 2])/(b*d) + (2*(b*B - a*C)*EllipticF[(c + d*x)/2, 2])/(b^2*d) + (2*(A*b^2 - a*(b*B
 - a*C))*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b^2*(a + b)*d)

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx &=-\frac{\int \frac{-A b-(b B-a C) \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b}+\frac{C \int \sqrt{\cos (c+d x)} \, dx}{b}\\ &=\frac{2 C E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d}+\frac{(b B-a C) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{b^2}+\left (A-\frac{a (b B-a C)}{b^2}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx\\ &=\frac{2 C E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d}+\frac{2 (b B-a C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac{2 \left (A-\frac{a (b B-a C)}{b^2}\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{(a+b) d}\\ \end{align*}

Mathematica [A]  time = 1.57332, size = 177, normalized size = 1.82 \[ \frac{\frac{C \sin (c+d x) \left (\left (2 a^2-b^2\right ) \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{a b^2 \sqrt{\sin ^2(c+d x)}}+\frac{(2 A+C) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}+\frac{B \left (2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-\frac{2 a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}\right )}{b}}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])),x]

[Out]

(((2*A + C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + (B*(2*EllipticF[(c + d*x)/2, 2] - (2*a*Ellipt
icPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)))/b + (C*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*
(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (2*a^2 - b^2)*EllipticPi[-(b/a), -ArcSin[Sqrt[Cos[c + d*x]
]], -1])*Sin[c + d*x])/(a*b^2*Sqrt[Sin[c + d*x]^2]))/d

________________________________________________________________________________________

Maple [A]  time = 1.196, size = 323, normalized size = 3.3 \begin{align*} -2\,{\frac{\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}}{ \left ( a-b \right ){b}^{2}\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d} \left ( A{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,-2\,{\frac{b}{a-b}},\sqrt{2} \right ){b}^{2}+B{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) ab-B{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){b}^{2}-B{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,-2\,{\frac{b}{a-b}},\sqrt{2} \right ) ab-C{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{2}+C{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) ab-C{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) ab+C{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){b}^{2}+C{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,-2\,{\frac{b}{a-b}},\sqrt{2} \right ){a}^{2} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)
^2+1)^(1/2)*(A*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*b^2+B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a
*b-B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-B*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a*b-C*Ellip
ticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^2+C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b-C*EllipticE(cos(1/2*d*x+1/2*c
),2^(1/2))*a*b+C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2+C*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))
*a^2)/b^2/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^
2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(1/2)/(a+b*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)